• セミナー
  • 新技術
  • 遺伝子
遺伝子

ゲノム編集とは何か?~農作物開発の現在と未来~【MYCODEセミナーレポート】

公開日:2020年12月10日

ゲノム編集食品に関するMYCODEセミナーの動画を公開中です(写真:Shutterstock.com)

 最先端の遺伝子研究や話題の健康トピックに関して、第一線で活躍する講師陣をお招きして開催する「MYCODEセミナー」。今年度から、動画の形で配信開始し、これまでご参加いただけなかった方にも広く視聴いただいております。

 2020年度のノーベル化学賞を受賞したことで、注目が集まった「ゲノム編集」技術。8月に動画を公開したMYCODEセミナーでは、日本でのゲノム編集作物の研究や開発をリードされている、筑波大学の江面浩先生に、ご専門であるトマトのゲノム編集作物(高GABAトマト)の事例を通じ、ゲノム編集食品の現在と未来についてお伺いしました。

講師:江面 浩 先生
筑波大学生命環境系教授、つくば機能植物イノベーション研究センター長。博士(農学)。専門は遺伝育種科学・応用分子細胞生物学。筑波大学大学院生物科学研究科を経て、国内外の生物工学研究施設での技師、研究員を歴任し、2005年より現職。世界で最も栽培されているトマトのゲノム編集を通じてゲノム編集技術の可能性を追求しており、その研究は国内のみならず海外にも影響を与えている。

<第1部:農作物の品種改良とゲノム編集技術>

農作物とはどのような植物か?

 道端に生えている草のような野生の植物と畑の野菜(農作物)の違いを意識されたことはあるでしょうか?実は、両者は大きく違います。私たちが現在食べている野菜は栽培種と呼ばれ、これらは野生の植物(野生種)から品種改良が進む過程で、自然に起きた突然変異を利用して食べやすく育てやすい品種に改良され続けてきています。例えば、野生のトマトはとても実が小さいのですが、突然変異によって実が大きくなったものを選び取り続けてきた結果、現在の栽培トマトへと改良が進んでいきました。つまり、現在栽培されている品種は突然変異が集積した産物なのです(図1)。

図1. 野生種から栽培種へ

 実際に、野生種のトマトも栽培種のトマトも遺伝子の数としてはほとんど変わりませんが、よく見るとDNAの配列(ゲノム)が微妙に異なっており、これが大きさや味などの違いを生んでいます。現在はスーパーに1年中様々な種類が並んでいるトマトですが、実は歴史は浅く、比較的新しい農作物です。日本においてトマトは1600年代後半(江戸時代)に観賞用として入り、作物としての生産・消費が始まったのが明治時代初期、その栽培面積・消費が増えていったのは戦後になってからなのです。

 私たち生き物の身体は、DNAの配列を設計図に作られていますが、時に紫外線をはじめとする環境からのストレスによってDNAが壊れてしまうことがあります。その際、私たちの身体には切れたDNA配列をつなぎ合わせて元通りに修復する仕組みがあります。しかし、この修復の途中でまれにエラーが起こり、設計図が変わってしまう場合があります。これを突然変異と呼び、これまではランダムに起こった突然変異が品種改良の原動力になってきました。

ゲノム編集技術とは?

 DNAの修復の中で起こるエラー(突然変異)には、①配列の一部が欠ける、②DNAの塩基が別のものに置き換わる、③他の配列が挿入される、3つのパターンが考えられます。このような修復エラーによって、遺伝子に変異が起こり、生物の性質が変わることがあります。

 ゲノム編集技術は、この私たちが持っているDNAを修復する仕組みを利用し、変異を起こしたい部分にピンポイントで突然変異を起こすことができる技術です。ノーベル化学賞を受賞した「CRISPR/Cas9(クリスパー/キャスナイン)」などの技術を用いることで、変異を入れたい遺伝子の配列にハサミの遺伝子によって切れ目を入れ、生物の持つ修復作用を利用してDNA配列に変化(突然変異)を起こします(図2)。

図2. ゲノム編集技術とは

 これまでの品種改良では、放射線照射などでゲノム全体にランダムに突然変異を起こし、数万~数十万個体の中から欲しい特徴を持った個体を選ぶという、膨大な手間と時間のかかる作業が必要でした。しかし、ゲノム編集の技術を使うと、狙った遺伝子に突然変異を入れることができ、手間と時間を大幅にカットすることができるようになりました。

 例えば、美味しい品種であるが病気には弱いという場合、その品種を活かしながら病気に強くなるように少し変化させることで、これまで食べてきた品種を上手に活用することもできるかもしれません。このように、より良いもの、その時代のニーズや環境に合ったものをより早く届けられるなどというメリットがあり、ゲノム編集は世界中で注目を集めているのです(図3)。

図3. ゲノム編集のメリットとは?

<第2部:ゲノム編集作物の事例~高GABAトマト~>

 現在、様々なゲノム編集作物・食品の開発が進んでいますが、日本でのゲノム編集作物の事例として、最も開発が進んでいると言われている江面先生の研究グループの高GABAトマトについてご紹介いただきました。

高GABAトマトの開発

 トマトは南米ペルー原産の比較的新しい作物ですが、今では世界中で広く生産されています。身体に良いのはもちろんですが、各国でトマトの好み(嗜好性)や栽培環境というのは異なっており、急速に品種改良が進んでいます。
 
 研究グループではトマトに関する研究を進める中で、健康に良い機能を持ったトマトの開発を行いたいと考えました。少子高齢化が進む日本では、生活習慣病も増加しており、日頃の食事を通して生活習慣病の対策をしていきたいという思いからでした。

 そこで着目したのが、「GABA(β-アミノ酪酸)」です。GABAは、血圧上昇抑制やリラックス効果などの報告がある機能性物質です。GABAが作られる過程について調べたところ、GABAの量を増やす鍵となるのはGADと呼ばれる、GABA生合成酵素だということが分かりました(図4)。

図4. GABAの代謝経路

 このGADタンパク質は、本来酵素の活性を押さえるフタのような領域があり、そのままでは働くことができません。しかし、ストレスなどによって活性を押さえる領域が取り除かれると、酵素が働くことができるということが分かっていました。そこで、そのフタとなっている領域をゲノム編集で削ってしまえば、GABAをたくさん蓄積させることができるのではと考えました(図5)。

図5. GADタンパク質の活性化メカニズムとゲノム編集

 研究の結果、ゲノム編集によってGADのフタの領域が削られたトマトでは、確かにGABAの蓄積量が4~5倍程度増加していることが分かりました。また、このトマトは他のアミノ酸の組成に変化はなく、ゲノム編集によってGABAのみにしか変化がないことも確かめられています(※1)(図6,7)。

図6. ゲノム編集技術で作られた高GABAトマト

図7. 開発したトマトのGABA含有量の変化

 これまでに、1日10~20mgのGABA摂取で血圧抑制に効果があるという報告があります(※2,3)。ここから推定すると、江面先生の研究グループで開発されたトマトでは、ミニトマトであれば2~3個程度、大玉もしくは中玉トマトであれば1/8個程度と、無理なく食べられる量で効果が期待できます。

<第3部:ゲノム編集作物の評価>

 最後に、ゲノム編集技術を使って作られた作物が安全かどうかをどのように評価されているのか、国内の法整備についてお話しいただきました。

遺伝子組換え技術とゲノム編集技術の違いとは?

 これまでゲノム編集技術とそのメリット、高GABAトマトの実例を見てきましたが、新しい技術を不安に思う方もいらっしゃるでしょう。中でも、遺伝子組換え技術とどう違うのか?本当に安全なのか?は大きなポイントではないでしょうか。

 まず遺伝子組換えとは、他の生物が持つ遺伝子を組み入れるため、これまでの品種改良では作れない遺伝子を持つ生物ができると言えます。例えば、除草剤に強い遺伝子組換えダイズでは、そのような特徴を持つ微生物の遺伝子が導入されています。外から遺伝子を入れることで新しい設計図を作るため、その遺伝子から作られるタンパク質が安全で、環境に影響がないかを評価する必要が出てきます。

 一方で、ゲノム編集では外からハサミの遺伝子を一時的に入れDNAの配列に変化は生じるものの、最終的にはハサミの遺伝子は残らない仕組みとなっています。そのため遺伝子の数も変わらず、実態はこれまでの品種改良で行われている突然変異の変化と同じものと言えます。新しい設計図ではなく、少し設計図を書き換えただけと言ってもいいでしょう。例えば車を例に挙げると、ゲノム編集はエンジンを交換するのではなく、ちょっとネジの加減を変えてチューニングするようなもの、と江面先生は表現しておられました(図8)。

図8. ゲノム編集と遺伝子組換えの違いとは?

 それでも、「食べても安全なの?」という意見もあるかもしれません。最終的に一般のスーパーなどで流通するゲノム編集作物は、これまでの品種改良でできたものと同じように安全だと考えられます。一方で、新しい技術から作られたものなので、新たなリスクがないかなど慎重に科学的な検討を行い、その知見を積み上げていくことが大切だというのが、日本だけでなく世界の方向性とのことでした。

ゲノム編集作物(食品)の規制について

 ゲノム編集作物が私たちの食卓に並ぶまでには3つの省庁による規制があります。栽培して良いかに関しては農林水産省(カルタヘナ法)、食べても良いかに関しては厚生労働省(食品安全法)、表示に関しては消費者庁が、それぞれ監督しています。

 ゲノム編集技術は3つのタイプに分けられています。タイプ1(SND-1)はエラー修復のお手本となる遺伝子は入れず、自然に修復された際に起きた変異を利用したものです。この場合は、外からの遺伝子(外来遺伝子)は最終的に残りませんし、自然変異でも起こります(図9)。

図9. ゲノム編集技術の分類

 現在開発が進められているゲノム編集作物のほとんどがタイプ1(SDN-1)で、日本の規制では遺伝子組換えに当たらないとされています。そのためには、まず外から入れたハサミの遺伝子が完全になくなっていることを証明することが大事になります。

 上記で進められている高GABAトマトも、タイプ1(SDN-1)に属します。食品として流通できるようにするためには、厚生労働省へ事前相談の上で遺伝子組換えでないか確認の上、届出(申請)が求められています。届出だけというと一見心配に思われるかもしれませんが、求められる情報は多く、それらを十分検証した上で流通となります(※4)(図10)。

図10. ゲノム編集食品の取り扱いフロー

 ところで、ゲノム編集技術で特に懸念されているのが、「オフターゲット」という現象です。オフターゲットとは、本来狙っていたDNA配列以外に生じるDNA変異のことを言います。

 ゲノム編集技術によって、狙った遺伝子にハサミの遺伝子で切れ目を入れますが、まれに似た配列を持つ別の遺伝子に変異が生じることがあります。このような現象は自然でも起こりうることですが、届出の際にはオフターゲットが起こりそうな配列に変化がないかも確認します。また、アレルギーを引き起こすアレルゲンなどがないかについても確認が求められています。

 ゲノム編集技術により、農作物の品種改良スピードは劇的に向上することが期待されます。新技術を使いこなすことが、今後の持続可能な農業や少子高齢化社会など、世界的な問題を解決する鍵となるかもしれません。

<ゲノム編集食品Q&A>

 8月より公開している本セミナー動画(2021年3月末まで公開予定)。視聴後のアンケートでは、「遺伝子組み換えとゲノム編集の違いが分かって良かった」「色々な情報が詰まっていて驚いた」などの感想をいただきました。

 今回は、アンケートの中で寄せられたMYCODE会員からの疑問に江面先生にお答えいただきました。

Q1.ゲノム編集作物としてトマト以外にどのようなものの開発が進んでいるのでしょうか?

A:国外では、ダイズ、トウモロコシ、イネ、レタスなどです。国内では、トマト以外に、イネ、ジャガイモ、コムギなどの開発が進んでいます。

Q2.研究者でも予測できない新しいリスクもあるのではないかと思いますが、どのような対応が考えられるでしょうか?例えば、届出制度や表示制度が変わっていくこともあるのでしょうか?

A:ゲノム編集技術は、従来の突然変異育種の精度を向上させた技術です。従って、従来の育種で想定される以上のリスクはないと考えています。届出制度や表示制度は、現行の制度で固定されたものではなく、今後の技術の進歩や利用の実績を見て、その都度見直しが行われていくと思います。

Q3.日本で開発が進んでいるゲノム編集作物のことは分かりましたが、輸入される作物についてどのような規制や検査があるのでしょうか?

A:海外で開発された作物についても、日本に輸出する場合、日本のルールに従うことになっています。

Q4.ゲノム編集作物が市中で栽培されるようになった時に既存の品種と交雑が起きて問題になることはないのでしょうか?

A:ゲノム編集作物が市中で栽培されるようになるには、開発者による農水省への事前相談、その終了後に届出が行われます。その事前相談の段階で一般栽培した場合に環境に影響がないか検討され、影響がないと判断された場合に届出が行われます。従って、適切に届出がされたゲノム編集作物であれば、ご指摘のような問題はありません。

Q5.現在、遺伝子組換え食品やゲノム編集食品の流通量はどのくらいなのでしょうか?今後どのように変化するとお考えでしょうか?

A:遺伝子組換え食品の正確な流通量は分かりません。ただ、我が国は1996年以来、多くの遺伝子組換えダイズ、トウモロコシ、ナタネを継続的に輸入しています。それらが食品原料になったり、家畜の餌になったりしていますので、我が国では直接的、間接的に遺伝子組換え作物を消費していることになります。世界的には相当量が既に流通していますが、今後その一部はゲノム編集食品に置き換わっていくと思います。ゲノム編集食品については、米国では、2019年から少量ですがゲノム編集ダイズから絞った油の販売が始まっています。我が国ではまだ流通はありません。今後、世界的には流通量が段階的に増えていくと思います。


 MYCODEセミナーレポート、いかがでしたか。ゲノム編集技術という難しいテーマでしたが、先生には大変分かりやすくお話しいただきました。狙った遺伝子を書き換えることができるゲノム編集技術は、今では基礎研究だけでなく食品や医療分野まで幅広く利用されるようになり、今年のノーベル化学賞受賞につながっています。今回の動画配信が、今後食卓に並ぶかもしれないゲノム編集食品やこれから注目すべきこの技術について知る、良いきっかけになれば幸いです。

 MYCODE会員限定とはなりますが、動画は2021年3月末まで公開予定です。セミナーレポート同様、3部構成になっておりますので、まだの方はぜひ気になった箇所からご覧になってみてください。



 MYCODEセミナーは、今後も開催していく予定です。MYCODE会員の皆様にはメールで開催予定をお知らせしておりますが、セミナー予定ページもぜひご活用ください。


参考文献
※1. Lee J, Utilization of a genome-edited tomato (Solanum lycopersicum) with high gamma aminobutyric acid content in hybrid breeding., J Agric Food Chem.
※2. Inoue K, Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives., Eur J Clin Nutr.
※3. 風見大司, γ-アミノ酪酸配合和風調味料の軽症高血圧者, 正常高血圧者を含む健常者に対する降圧作用, 日本食品科学工学会誌
※4. 厚生労働省, ゲノム編集技術応用食品等「ゲノム編集技術応用食品を適切に理解するための6つのポイント」